A geometric description of Dirac monopoles

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1984 J. Phys. A: Math. Gen. 17 L807
(http://iopscience.iop.org/0305-4470/17/14/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 07:46

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A geometric description of Dirac monopoles \dagger

J Tafel
Institute of Theoretical Physics, Warsaw University, Hoża 69, 00-681 Warsaw, Poland

Received 29 March 1984, resubmitted 29 May 1984

Abstract

Dirac magnetic monopoles are described in terms of principal $\mathrm{U}(1)$ bundles over the sphere S^{2}. The structure group $\mathrm{U}(1)$ is then extended to the group $\mathrm{SU}(2)$ and potentials are given in gauges free of string singularities. Resulting vector and scalar fields can be asymptotic quantities for non-Abelian monopoles.

It is known that a Dirac magnetic monopole does not admit electromagnetic potentials which are regular and single-valued outside the position of the pole (Dirac 1931, Wu and Yang 1975). If r, θ, ϕ denote spherical coordinates in the Minkowski space-time (with signature +---) adapted to the worldline of the monopole, then in the domains where $\theta \neq 0$ or $\theta \neq \pi$ the potential 1-form can be chosen as

$$
\begin{equation*}
\kappa(\cos \theta+1) \mathrm{d} \phi \quad(\theta \neq 0) \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\kappa(\cos \theta-1) \mathrm{d} \phi \quad(\theta \neq \pi), \tag{2}
\end{equation*}
$$

respectively. Forms (1) and (2) give rise to a single-valued, spherically symmetric magnetic field. The constant κ has the meaning of the total magnetic charge of the monopole and the Dirac quantisation condition says that κ is a multiple of the smallest non-vanishing charge, thus $\kappa=n \kappa_{1}$, where n is an integer (see Goddard and Olive (1978) for a review).

In terms of principal fibre bundles (Kobayashi and Nomizu 1963) the Dirac monopole with charge $n \kappa_{1}$ can be described by a connection ω_{n} on a $\mathrm{U}(1)$ bundle, denoted here by $L_{n}\left(S^{2}, \mathrm{U}(1)\right)$, over the two-dimensional sphere in the physical threedimensional space (Wu and Yang (1975), more recent references can be found in Quiros and Rodriguez (1983)). The angles θ, ϕ parametrise the sphere and the remaining coordinates r, t can be introduced by taking the product of L_{n} with R^{2}.
L_{0} is the trivial bundle $S^{2} \times \mathrm{U}(1)$ and ω_{0} is the trivial connection, $\omega_{0}(x, a)=a^{-1} \mathrm{~d} a$. In the following we assume $n \neq 0$ if not stated otherwise.

As it was noted by Trautman (1977) the bundle space L_{n} is the lens space $\mathrm{SU}(2) / Z_{n}$, where Z_{n} is the group of $\operatorname{SU}(2)$-valued nth roots of identity matrix. If we denote an element of $S U(2)$ by $g Z_{n}$, where $g \in S U(2)$, then the action of $U(1)$ on L_{n} is defined by

$$
\begin{equation*}
g Z_{n} \rightarrow(g \sqrt[n]{a}) Z_{n}, \quad a \in \mathrm{U}(1) \subset \mathrm{SU}(2) \tag{3}
\end{equation*}
$$

where the group $\mathrm{U}(1)$ is identified with the set of diagonal matrices in $\mathrm{SU}(2), a \leftrightarrow$ $\operatorname{Diag}(\bar{a}, a)$.
† Research supported in part by the Polish Ministry of Science, Higher Education and Technology under Grant MRI7 to Warsaw University.

We choose $e_{k}=-\mathrm{i} \sigma_{k} / 2(k=1,2,3), \sigma_{k}$ being the Pauli matrices, as generators of the Lie algebra $\operatorname{su}(2)$. Then $\left[e_{i}, e_{j}\right]=\varepsilon_{i j k} e_{k}$ and e_{k} 's constitute a basis orthonormal with respect to the Killing form divided by -2 . This basis induces the left invariant basis θ^{k} of 1 -forms on $\mathrm{SU}(2)$ such that the Maurer-Cartan form is $g^{-1} \mathrm{~d} g=e_{k} \theta^{k}$.

The common base space of L_{n} 's can be identified with a two-dimensional sphere in su(2) in such a way that a direction described by the angles θ, ϕ corresponds to the vector

$$
\begin{equation*}
\sin \theta \cos \phi e_{1}+\sin \theta \sin \phi e_{2}+\cos \theta e_{3} . \tag{4}
\end{equation*}
$$

With this convention we define the canonical projections $\pi_{n}: \mathrm{SU}(2) / Z_{n} \rightarrow S^{2}$ by $\pi_{n}\left(g Z_{n}\right)=\pi(g)$, where $\pi(g)=g e_{3} g^{-1}$. If
$g(\phi, \theta, \chi)=\exp \left(\phi e_{3}\right) \exp \left(\theta e_{2}\right) \exp \left(\chi e_{3}\right), \quad 0 \leqslant \phi<2 \pi, \quad 0 \leqslant \theta \leqslant \pi, \quad 0 \leqslant \chi<4 \pi$ is a parametrisation of $\operatorname{SU}(2)$ then $\pi(g(\phi, \theta, \chi))$ coincides with (4).

The connection form ω_{n} on L_{n} corresponding to the Dirac monopole of charge $n \kappa_{1}$ can be defined by

$$
\begin{equation*}
p_{n}^{*} \omega_{n}=n e_{3} \theta^{3} \tag{5}
\end{equation*}
$$

where p_{n} is the natural homomorphism of L_{1} onto $L_{n}, p_{n}(g)=g Z_{n}$. The pullbacks of ω_{n} under the sections $p_{n} \circ \sigma_{+}, p_{n} \circ \sigma_{-}$, where $\sigma_{ \pm}(\theta, \phi)=g(\phi, \theta, \pm \phi)$ and $\theta \neq 0, \theta \neq \pi$, respectively, yield the expressions

$$
\begin{equation*}
A_{n}^{ \pm}=n(\cos \theta \pm 1) \mathrm{d} \phi e_{3} \tag{6}
\end{equation*}
$$

which are equivalent to (1) and (2) for $\kappa=n \kappa_{1}$.
Further considerations are based on the existence of the mappings $\Lambda_{n}: \operatorname{SU}(2) \rightarrow$ $\operatorname{SU}(2)$ such that $\Lambda_{n}(1)=1$ and $\Lambda_{n}(g a)=\Lambda_{n}(g) a^{n}$ for any $a \in U(1)$ and $g \in \operatorname{SU}(2)$. If

$$
g=\left(\begin{array}{rr}
z_{1} & -\bar{z}_{2} \\
z_{2} & \bar{z}_{1}
\end{array}\right)
$$

where $z_{1}, z_{2} \in \mathbb{C},\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1$, then

$$
\Lambda_{n}(g)=\left(\left|z_{1}\right|^{2 n}+\left|z_{2}\right|^{2 n}\right)^{-1 / 2}\left(\begin{array}{rr}
z_{1}^{n} & -\bar{z}_{2}^{n} \\
z_{2}^{n} & \bar{z}_{1}^{n}
\end{array}\right) \quad \text { for } n \geqslant 1
$$

and $\Lambda_{n}(g)=\Lambda_{-n}(\bar{g})$ for $n \leqslant-1$.
The mappings Λ_{n} appear naturally in the classification of left actions of $\mathrm{SU}(2)$ on $\operatorname{SU}(2)$ bundles over S^{2}. They guarantee the triviality of the bundles $\mathrm{SU}(2) \times_{\mathrm{U}(1)} \mathrm{SU}(2)$ (Harnad et al 1980).
Λ_{n} can be projected to the fibre bundle homomorphism $f_{n}: L_{n} \rightarrow L_{1}$, such that $f_{n}\left(g Z_{n}\right)=\Lambda_{n}(g)$, and further to a mapping $\Phi_{n}: S^{2} \rightarrow S^{2}$. Thus we have the following commutative diagram:

L_{n} is the bundle induced by Φ_{n}; however, the connection ω_{n} is not that one induced by Φ_{n} from ω_{1}. All the mappings in the diagram are of class $C^{\infty} . \Lambda_{n}$ belongs to the homotopy class [n^{2}] in $\pi_{3}(S U(2))$ whereas Φ_{n} represents the element [n] of $\pi_{2}\left(S^{2}\right)$. In the coordinates θ, ϕ

$$
\begin{equation*}
\Phi_{n}(\theta, \phi)=\sin \theta_{n} \cos n \phi e_{1}+\sin \theta_{n} \sin n \phi e_{2}+\cos \theta_{n} e_{3} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\tan \left(\theta_{n} / 2\right)=\tan ^{|n|}(\theta / 2) \tag{9}
\end{equation*}
$$

The bundles L_{n} ($n=0$ included) exhaust all inequivalent $\mathrm{U}(1)$ bundles over S^{2}. Each of them admits a (unique) left action of $S U(2)$ commuting with (3) and projecting to the rotations

$$
\begin{equation*}
\pi\left(g^{\prime}\right) \rightarrow \pi\left(g g^{\prime}\right)=g \pi\left(g^{\prime}\right) g^{-1}, \quad g \in \mathrm{SU}(2) \tag{10}
\end{equation*}
$$

of S^{2}. These actions are given by

$$
\begin{align*}
& \left(\pi\left(g^{\prime}\right), a\right) \rightarrow\left(\pi\left(g g^{\prime}\right), a\right) \quad \text { for } n=0 \tag{11a}\\
& g^{\prime} Z_{n} \rightarrow\left(g g^{\prime}\right) Z_{n} \quad \text { for } n \neq 0 \tag{11b}
\end{align*}
$$

The connection form ω_{n} is invariant under (11) with the appropriate index n, that corresponds to the spherical symmetry (up to gauge transformations) of the potentials (6).

Now we consider the Dirac monopoles from the point of view of the $\operatorname{SU}(2)$ Yang-Mills theory. Wu and Yang (1975) first noted that if the gauge group of electromagnetism is extended to $\operatorname{SU}(2)$ then potentials of the monopole with $n=1$ are free from string singularities in an appropriate gauge. There were a few attempts (Quiros and Rodriguez 1983, Bais 1976) to extend this result for $|n|>1$, however, in our opinion they are not satisfactory.

There is only one (up to equivalences) $S U(2)$ principal bundle over S^{2}, namely the trivial one $S^{2} \times \mathrm{SU}(2)$. The bundles L_{n} can be considered as its reductions. The corresponding embeddings $I_{n}: L_{n} \rightarrow S^{2} \times \operatorname{SU}(2)$ are given by
$I_{0}(x, a)=(x, a), \quad I_{n}\left(g Z_{n}\right)=\left(\pi(g), \Lambda_{n}(g)\right) \quad$ for $n \neq 0$.
ω_{n} defines uniquely a connection $\tilde{\omega}_{n}$ on $S^{2} \times \operatorname{SU}(2)$ such that $\omega_{n}=I_{n}^{*} \tilde{\omega}_{n}$. Due to the triviality of $S^{2} \times S U(2), \tilde{\omega}_{n}$ necessarily takes the form

$$
\tilde{\omega}_{n}(x, h)=h^{-1} \tilde{A}_{n}(x) h+h^{-1} \mathrm{~d} h
$$

where \tilde{A}_{n} is a 1 -form of class C^{∞} on $S^{2} . \tilde{A}_{0}=0$ and \tilde{A}_{n} for $n \neq 0$ can be computed by the use of (5), hence

$$
\begin{equation*}
\left(\pi^{*} \tilde{A}_{n}\right)(g)=\Lambda_{n}(g) n e_{3} \theta^{3} \Lambda_{n}(g)^{-1}+\Lambda_{n}(g) \mathrm{d} \Lambda_{n}(g)^{-1} \tag{13}
\end{equation*}
$$

and further

$$
\begin{align*}
\tilde{A}_{n}(\theta, \phi)= & \left(\sin n \phi \mathrm{~d} \theta_{n}+n \sin \theta_{n} \cos \theta \cos n \phi \mathrm{~d} \phi\right) e_{1} \\
& +\left(-\cos n \phi \mathrm{~d} \theta_{n}+n \sin \theta_{n} \cos \theta \sin n \phi \mathrm{~d} \phi\right) e_{2}+n\left(\cos \theta_{n} \cos \theta-1\right) \mathrm{d} \phi e_{3} \tag{14}
\end{align*}
$$

where θ_{n} is given by (9).
From the viewpoint of the Yang-Mills theory on the Minkowski space, the forms \tilde{A}_{n} represent the potentials of Dirac monopoles in a no-string gauge. They are singular
at $r=0$ only. To get physical quantities, \tilde{A}_{n} can be divided by the coupling constant related to the gauge group $\operatorname{SU}(2)$.

The procedure leading to \tilde{A}_{n} can be described without the notion of fibre bundles. To do this we first set $\kappa=n / 2$ in (1) and multiply the result by ($-\mathrm{i} \sigma_{3}$). In this way we get the potential form A_{n}^{+}(defined for $\theta \neq 0$) in the framework of the $\mathrm{SU}(2)$ gauge theory. Next we perform the gauge transformation $A_{n}^{+} \rightarrow h_{n}^{-1} A_{n}^{+} h_{n}+h_{n}^{-1} \mathrm{~d} h_{n}$, where

$$
h_{n}=\left[\sin ^{2 n}(\theta / 2)+\cos ^{2 n}(\theta / 2)\right]^{-1 / 2}\left(\begin{array}{cc}
\cos ^{n}(\theta / 2) \exp (\mathrm{in} \phi), & \sin ^{n}(\theta / 2) \\
-\sin ^{n}(\theta / 2), & \cos ^{n}(\theta / 2) \exp (-\mathrm{i} n \phi)
\end{array}\right) .
$$

The resulting expression coincides with \tilde{A}_{n} and is extendable to whole S^{2}.
It follows from (7) and (13) that

$$
\mathrm{d} \Phi_{n}+\left[\tilde{A}_{n}, \Phi_{n}\right]=0,
$$

hence Φ_{n} defines a covariantly constant Higgs field (in the adjoint representation) on S^{2}. Since the winding number of Φ_{n} is equal to n, so \tilde{A}_{n} and Φ_{n} can be asymptotic forms of the gauge field and the Higgs field, respectively, appearing in the construction of non-Abelian monopoles (see Goddard and Olive (1978) and O'Raifeartaigh and Rouhani (1981) for a review).

The forms $\tilde{A}_{ \pm 1}$ are equivalent to the potentials found by Wu and Yang (1975). For $n \neq 0, \pm 1 \tilde{A}_{n}$ and Φ_{n} are different from the expressions considered by Quiros and Rodriguez (1983) and Bais (1976), which correspond to (8) and (14) with θ_{n} replaced by θ. The potentials obtained by these authors (for $n \neq 0, \pm 1$) have singularities at $\theta=0$ and π, whereas the Higgs fields are not differentiable at these points. Thus they cannot be asymptotic quantities for non-Abelian monopoles unless singular gauges are used.

Considering possible left actions of $\operatorname{SU}(2)$ on $S^{2} \times \operatorname{SU}(2)$ there are infinitely many non-equivalent actions, which commute with the action of the structure group and project to the rotations (10) of S^{2}. All of them can be deduced from (11) and (12) and are given by

$$
\left(\pi\left(g^{\prime}\right), h\right) \rightarrow\left(\pi\left(g g^{\prime}\right), \Lambda_{n}\left(g g^{\prime}\right) \Lambda_{n}\left(g^{\prime}\right)^{-1} h\right), \quad g \in \operatorname{SU}(2),
$$

where $\Lambda_{0}(g)=g$. The connection $\tilde{\omega}_{n}$ is invariant under the action with the index n, hence \hat{A}_{n} is invariant under rotations up to gauge transformations.

I am indebted to Professor A Trautman for his kind interest in this paper and I thank Professor J P Antoine and his group for their hospitality during my stay at Louvain-laNeuve, where a part of this work was carried out.

References

Bais F A 1976 Phys. Lett. 64B 465
Dirac P A M 1931 Proc. R. Soc. A133 60
Goddard P and Olive D 1978 Rep. Prog. Phys. 411357
Harnad J, Shnider S and Vinet L 1980 J. Math. Phys. 212719
Kobayashi S and Nomizu K 1963 Foundations of Differential Geometry vol 1 (New York: Wiley)
O'Raifeartaigh L and Rouhani S 1981 Acta Physica Austr. (Suppl.) XXIII 525
Quiros M and Rodriguez E 1983 Nuovo Cimento 76A 495
Trautman A 1977 Int. J. Theor. Phys. 16561
Wu T T and Yang C N 1975 Phys. Rev. D12 3845

